Selective permeability barrier to urea in shark rectal gland.

نویسندگان

  • Joshua D Zeidel
  • John C Mathai
  • John D Campbell
  • Wily G Ruiz
  • Gerard L Apodaca
  • John Riordan
  • Mark L Zeidel
چکیده

Elasmobranchs such as the dogfish shark Squalus acanthius achieve osmotic homeostasis by maintaining urea concentrations in the 300- to 400-mM range, thus offsetting to some degree ambient marine osmolalities of 900-1,000 mosmol/kgH(2)O. These creatures also maintain salt balance without losing urea by secreting a NaCl-rich (500 mM) and urea-poor (18 mM) fluid from the rectal gland that is isotonic with the plasma. The composition of the rectal gland fluid suggests that its epithelial cells are permeable to water and not to urea. Because previous work showed that lipid bilayers that permit water flux do not block flux of urea, we reasoned that the plasma membranes of rectal gland epithelial cells must either have aquaporin water channels or must have some selective barrier to urea flux. We therefore isolated apical and basolateral membranes from shark rectal glands and determined their permeabilities to water and urea. Apical membrane fractions were markedly enriched for Na-K-2Cl cotransporter, whereas basolateral membrane fractions were enriched for Na-K-ATPase. Basolateral membrane osmotic water permeability (P(f)) averaged 4.3 +/- 1.3 x 10(-3) cm/s, whereas urea permeability averaged 4.2 +/- 0.8 x 10(-7) cm/s. The activation energy for water flow averaged 16.4 kcal/mol. Apical membrane P(f) averaged 7.5 +/- 1.6 x 10(-4) cm/s, and urea permeability averaged 2.2 +/- 0.4 x 10(-7) cm/s, with an average activation energy for water flow of 18.6 kcal/mol. The relatively low water permeabilities and high activation energies argue strongly against water flux via aquaporins. Comparison of membrane water and urea permeabilities with those of artificial liposomes and other isolated biological membranes indicates that the basolateral membrane urea permeability is fivefold lower than would be anticipated for its water permeability. These results indicate that the rectal gland maintains a selective barrier to urea in its basolateral membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfusion of isolated tubules of the shark rectal gland. Electrical characteristics and response to hormones.

Both the mammalian thick ascending limb of Henle's loop and the shark rectal gland actively transport Cl against an electrochemical gradient by mechanisms involving hormone-sensitive NaCl transport. In contrast to mammalian renal tubules, individual tubules of the shark rectal gland previously have not been perfused in vitro. Using a combination of renal slice and microdissection techniques we ...

متن کامل

Aquaporin 4 is a Ubiquitously Expressed Isoform in the Dogfish (Squalus acanthias) Shark

The dogfish ortholog of aquaporin 4 (AQP4) was amplified from cDNA using degenerate PCR followed by cloning and sequencing. The complete coding region was then obtained using 5' and 3' RACE techniques. Alignment of the sequence with AQP4 amino acid sequences from other species showed that dogfish AQP4 has high levels (up to 65.3%) of homology with higher vertebrate sequences but lower levels of...

متن کامل

Regulation of MRP2-mediated transport in shark rectal salt gland tubules.

We examined endothelin-1 (ET-1) regulation of the xenobiotic efflux pump, multidrug resistance-associated protein isoform 2 (MRP2), in intact dogfish shark rectal salt gland tubules using a fluorescent substrate sulforhodamine 101 and confocal microscopy. Subnanomolar to nanomolar concentrations of ET-1 rapidly reduced the cell-to-lumen transport of sulforhodamine 101. These effects were preven...

متن کامل

Permeabilities of teleost and elasmobranch gill apical membranes: evidence that lipid bilayers alone do not account for barrier function.

Teleosts and elasmobranchs faced with considerable osmotic challenges living in sea water, use compensatory mechanisms to survive the loss of water (teleosts) and urea (elasmobranchs) across epithelial surfaces. We hypothesized that the gill, with a high surface area for gas exchange must have an apical membrane of exceptionally low permeability to prevent equilibration between seawater and pla...

متن کامل

A perfusion study of the handling of urea and urea analogues by the gills of the dogfish shark (Squalus acanthias)

The branchial mechanism of urea retention in elasmobranchs was investigated using an in vitro isolated-perfused head preparation, as well as in vivo samples, in the spiny dogfish shark. Both in vivo and in control saline perfusions containing 350 mmol L(-1) urea, calculated intracellular urea concentrations in gill epithelial cells were close to extracellular concentrations. Urea efflux to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 289 1  شماره 

صفحات  -

تاریخ انتشار 2005